2009/2010

Mathématiques (2ème SC)

Prof: Bourokba Hassen

durée: 60 min

Exercice 1: (3 points)

Pour chaque énoncé, on propose trois réponses a, b et c. Une seule est correcte. Laquelle ?

1) On admet que l'équation $5x^2 - 33x + 17 = 0$ possède deux racines distinctes x_1 et x_2 . Alors

a)
$$x_1 \cdot x_2 < 0$$

b)
$$x_1 \cdot x_2 = \frac{33}{5}$$

c)
$$x_1 \cdot x_2 > 0$$

2) Si G est le barycentre des points pondérés (A, -3) et (B, 4), alors

i) a)
$$G \in [AB]$$

b)
$$G \in (AB)$$
 et $G \notin [AB]$

c)
$$G \notin (AB)$$

ii) a)
$$\overrightarrow{AG} = 4\overrightarrow{AB}$$

b)
$$\overrightarrow{AG} = -4\overrightarrow{AB}$$

c)
$$\overrightarrow{AG} = 4\overrightarrow{BG}$$

Exercice 2: (6 points)

Résoudre dans $\mathbb R$ les équations suivantes :

a)
$$3x^2 + \sqrt{12}x - 2 = 0$$

a)
$$3x^2 + \sqrt{12}x - 2 = 0$$
 b) $2009x^2 + 2010x + 1 = 0$ c) $\frac{x^2 - x - 12}{x + 3} = 0$

c)
$$\frac{x^2-x-12}{x+3}=0$$

Exercice 3: (4 points)

Soit (\vec{i}, \vec{j}) une base orthonormée de l'ensemble des vecteurs.

Soit $\vec{u}\binom{2}{m+1}$ et $\vec{v}\binom{3}{-2}$ dans la base (\vec{i},\vec{j}) ; où m un réel.

- 1) Déterminer le réel m pour que \vec{u} et \vec{v} soient orthogonaux.
- 2) Déterminer les valeurs possibles du réel m pour que $\|\vec{u}\| = 2$.

Exercice 4: (7 points)

Soit *ABCD* un rectangle tel que AB = 5 cm et BC = 2 cm.

Soit *I* le barycentre des points (A, 2) et (B, 1) et soit *J* le barycentre des points (C, -1) et (D, 2).

- 1) Construire les points *I* et *J*.
- 2) Déterminer et construire l'ensemble des points M tels que

a)
$$\|2\overrightarrow{MA} + \overrightarrow{MB}\| = 6$$

b)
$$\|2\overrightarrow{MA} + \overrightarrow{MB}\| = 3\|2\overrightarrow{MD} - \overrightarrow{MC}\|$$

3) On considère le point K tel que $6\overrightarrow{KA} + 3\overrightarrow{KB} + \overrightarrow{KC} - 2\overrightarrow{KD} = \overrightarrow{0}$

Montrer que les points I, J et K sont alignés.

